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A New Algorithm for 3-D Nonlinear
Electromagnetic Inversion

Cranguan Xie
Jianhua Li

Summary. We propose a new algorithm for 3-1) electromagnetic inversion that works
with the magnetic-field integral equation {instead of the traditional electric-field integral
equation). The forward and inverse integral equations are discretized by the finite
clement method; solution of the matrix system involves aliemating conjugate-gradient
and biconjugate-gradient iterations, The solution is regularized by a novel extemnal
annealing technigue. A coupled-domain decomposition allows a very efficient (96%)
implementation of the algorithm on massively parallel machines. Tests on both synthetic
and field data from environmental sites yield good subsurface images in a reasonable
amount of computational time.

1  Introduction

The distribution of electrical conductivity in the Earth is impontant in geophysical ex-
ploration, oil reservoir management, and environmental site characterization, because
the conductivity often is determined mainly by the pore fluids, porosity, and saturation
of the rocks. Three-dimensional imversion of electromagnetic (EM) data is. however, ill-
posed, strongly nonlinear, and computationally demanding. In our waork on this problem
{Lee et al,, 1995; Xie and Lee, 1995; Xie etal., 19954, 1995h), we have found that use of
the EM integral equation for the magnetic field has cenain advantages over standard ap-
proaches that use the integral equation for the electric field, We outline the reasons here,
beginning with a short derivation of the magnetic-field integral equation for forward
modeling and recasting the (nonlinear) EM inverse problem in terms of this equation, We
then describe o finite-element method for its discretization and an efficient parallel al-
gorithm for its solution. We conclude with sample inversions of synthetic and ficld data.

2 Magnetic-field integral equation
Maxwell's equations
¥ x E= —{wu{H + M) (1}
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anid
VxH=(o+iwE+] (2}

allow derivation of integral equations for both the electric and the magnetic fields
{Habashy et al., 1993; Torres-Verdin and Habashy, 1994). The more familiar electric-
field integral equation is

Eir) = E,(r} - r'a.;-;.:f Giir. Pl — ap) + imle - es | E(r ) dE, (3]
¥,

The different quantities are defined in the standard way: E is the total electric field; E,
15 the background electric field; H is the total magnetic field; 1 is the magnetic perme-
ability; o is the electric conductivity; ¢ is the electric permittivity; e is the (angular)
frequency; @ is the background electric conductivity; €, is the background electric
permittivity; J is an electric current source; M is a magnetic current source; poinis ¢
and F are in the domain V,, where & — oy, + jle — €x) 3 0; finally, l_:f (r, ') is the
Green dyadic for the electric field in the background medium. In 3 layered medium, the
Green dyadic can be split into 2 whole-space part and a contribution from the layering:

1
Gy rr) = (f + Evv).g..[r- r')+GFir, r), i4)
wheepe
=rkgir—r'|
golr, ') == m- (5}
ki = —ilwpuioy + iwey), ()
Ir—rl=Jix—xR+(y—yP+(z 2P (M

Taking V= on both sides of Eq. (3} and using the second of Maxwell's eqiEtions
gives the following integral equation for the magnetic field:

(o = ap) + lwie — gy)
o+ e

(o — &) + iade — &)
E i
+j|;."i-',:--u:lj},lfl-,["I = Vi

where Hy, is the background magnetic field, ¥, is the gradient in variable r, and V.
is the gradient in variable r'. The magnetic and electric integral equations are cguiv-
alent theoretically, but not numerically, The advantages of the integral equation (8) is
described in Section 8.

H{r] = Hg{r}l —f "i-’,-g;,l,’l', I'"} :ﬂ: f?.r x H-= J}-dl'"l
¥,

(Ve x H - J)dr', (#)

4 New nonlinear EM inversion using integral equations

EM inversion amounts 1o solving the following nonlinear Fredholm inegral equation
of the first kind:

o — )+ e = 5]

H.:ir) = H,(r) —f Weguir, ) = i - (Vo x H=J)dr'
¥, T 4 ok
" j () ), e e
v, o + fos
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where H, is the measured magnetic-field data; Hj i the hackground magnetic field; H
is @ magnetic field inside the domain V, that satisfies the magnetic inegral equation (£).
Equation (%) is similar o Eq. (8) in form, but is a nonlinear integral equation for the
electric conductivity and permittivity in V, when data are given at points © oulside the
domain, The first varation of the nonlinear operator is

SHir) = f il R e s T e i — Thile
¥ & A fiei T 4 e
Eler 4 e ) (my + ooy ]

Pl S T S 2

—j?,xG;"tr,r'}l (¥, x H = Jydr’
¥,

fr = ) ) e
F 4 [ e

— ap b + file — €]
F 4 o

- f Vo mlr. 1) x
¥,

+fmxﬁmﬂw
¥

. = 8H d¥. {100

Because the nonlinear integral equation (9) is ill-posed, we transform it into the mini-

 mization of the following regularized functional:

(o — &) + fele = €p)
0 4 oM

8
E HH![E} —_ H”{r:l = f ":",-lg-..l:l', l'.l:' * [v.r x Hf — J}d['.l
= ¥

1

- [ v. =gt el T T
LS

a + e
+ a{Rie + iwe), & — iae) = min! (1

where i ., = Ry %, % i, it g is the number of frequencies; n, is the number of sources;
#, is the number of receivers; R is a positive-definite regularizing operator; and o is

the regularizing parameter.

We use the modified Gauss-Mewton iterative method to solve the minimization
problem defined by Eq. (11). Let J; be the Jacobian operator for Eq. (9) {J; maps a
perturbation in o + iwe toa change in magnetic ficld 4H; in discrete form, it is a matrix
of partial derivatives),

Jebilo + fene) = SH. {12)
We have

[ 3 + aR S0 + fwe) = —J{[Hg[r} — H; 4lr) +f Vgl )
¥

. (o — ) + fade — €)
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T -+ FEOE

(V. = H; — Ddr'] — &Rl 4 o). (13}
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4  Regularizing method

4.1 External regularizing method

The regulanzing operator R (Tikhonoy and Arsenin, 1977) is o positive-definite operi-
tor; forexample, R = —A, where A is the Laplacian operator. This external regulurizing
approach is easy o construct, but the optimum regularizing parameter o is difficult o
schect. Let

P — B = ) umr: — Hor)
(]

& = @) + fade — €}

+ f Ve galr, P x E (V. = H; — J)dr'
L

o + {E

t Jlf v, x GE(r, r":ll:ﬂ —I'."a}+1.'-!-:ﬂfs - E"]n;'r-',- < Hy — Tidr |

¥, O 4 [
(14}

The optimization (1 1) will be
Hgs — Hpoaal* + at(Rir + jare ), & — itwe) = min! (15)
Let H, be the exact daia and

[IH, = Haysll =< 4, (16}
Fia) = Haus = Hypogall®, (17)
glo) = (Rie +fax), o = iwel, (18)
hiee) = || Hygs — Hipeget|I* — 8, (19)

It can be proved that (e is a continuous and almost monodonic nondecreasing function,
gler) is a continwous and almost monotonie nonincreasing function of &, and hix) is a
continuous and almost monotonic function, When R = 1. Yagola { 1980) proved a similar
result. The minimum root of Eq. (19) will be an optimum regulurizing parameter. Xie
etal. (1987) proved that the regularized solution is convergent when « goes 10 ZeT0.

In nonlinear 3-D EM inversion for practical data, & can only be estimated crudely
because it includes physical system data noise and numerical aperator ermof, étc, There-
fore, Eq. (19) is solved approximately. We used a local annealing regularizing process
to madify the global discrepancy approach. The data-noise preestimation i85 very impor-
tant for the inverse problem. For given nolse bound 3, because the discrepancy function
feler ) is contineous and almost monstonic, we use the quasi-Newton and bisection mixed
method to find the optimum regularizing parameter, We also use the bisection method
to estimate the ermor bound 8,

4.2 Internal regularizing method

We used two internal regularizing approaches o solve the nonlinear miagnetic integral
cquaElion

4.2.1 High-order variation operator. From the variational operator formula
(10), we can obtain first-, second-, and higher-order approximasle  vanational
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aperaliors:
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In thiz monlinear inversion, 8'"'H is used in the first few iterations and then 82'H is
used.
4,202 Log-scale approximation
S + farbe
——— == ] +i !
e ogla 4+ fas) (22)
This formula is a good approximation for low frequency but rough for high frequency.
It can be a natural internal regularizing term for hgh-frequency noise, which is an
advantage of using the nonlinear magnetic inegral equation (9,

4.3 Annealing regularizing process

There exists a large number of local minima in the nonlinear regularizing magnetic
integral optimization (11). In particalar, there are sccumulative points of the local
minimum set becanse Eq, (11) 18 ill-posed. The regularizing term can isolate local
minima. We use an annealing process to find the global minimum of the regularizing
magnetic integral optimization that will provide a high-resolution EM imaging (Xie
et al., 1995a, 1995h). Let

H.r.

Ayl +ioe) =3

=l

Hy i(r) — Hy (r)

(o — ) 4 Fele — )
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Agle + lwed = Alm + ioe ], (24)
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where A is a positive functional (related 10 the internal regularizing and constraind
conditionsk; the annealing function is

fly =7, (25)
with decay coefficient A and pseudotemperature T

Giiven an initial oy + fosrg and pseudotemperature T, the annealing process is as
Foxlloves:

|. Perform a quasi-Newton iteration for solving Eqs. (9-(13) and run a random-
process BAN simultaneously.
2. Suppose @, + fwe, 15 known and 8o, + fwe, ) is obtained: calculate

oy == ﬂ-|[|'-.'a|- + dwe, 4 l;[':rlr + Jlﬂ-“i.q}l o Iﬂl"ﬂu + rlﬂ:'ﬁ-,-:l

= Bglen + iy + 8o, + fove,)) (26)
3. Update
Ty + e,y = a, + lwe, + o, + e, (27
if
Fik) = RAN. (28)

4. Change T = uT;, and go back 1o step 1.

The annealing-regularizing method presented here is robust and is wseful for interpret-
ing practical data. The optimum-regularizing parameter cannot be chosen wecurately
because of noise in practical data. Using the annealing-regularizing method we can,
usually obtain reasonable results.

5 Finile-element method

We use the finite-element method 10 discretize the forward magnetic infegral egqua-
tion (8) and the nonlinear magnetic integral equation (11) (Xie et al., 19495¢]), The cubic
desmain is divided into a set of finite cubic block elements. There are eight vertex nodes
in each element. Let (%, v, 2] be coordinale of the veriex i, and et £, &, and v be
the length of the side of the element in the x-, y-, and z-directions. respectively. The
trilinear finite-clement space H* can be constructed with basis functions g,

2t
H'ix. y,z) = E H;¢(x, v, z). (29)
P
where
H(x, ¥, z)
H'x, y.2)= | Hhx. 3.2 |, (300
HYx, y.2)
and

H,,
H = (Hﬂ : (31)
H.;
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In each cubac element, the bosis function is a trilinear fuiction

(x =)y — 3 )z - 2})

i sl (2 = 2u){h — 297 ) (v - 22°)° 34)
whern:
Lt =8 wtve=mh n4+=w, (33
and
{xj. ¥ 2 )= (0,00, .. {xg. ¥ Za) = {0, &, v), (34

Upon substituting Egs. (29)-(31) and their derivatives into Eq. (8}, we obtain the finite-
element equation for the discrete magnetic field:

KH = 5 (15)

This matrix K is a full matrix, composed of element matrices

[
E=3icE¢C (36)
dm]
where
E'.=|:KI-':_I_L L iml 2 .. B {37)

and C* s 4 connection matrix between local and global nodes. Similarly, we can make
a linite-element approximation for the nonlinear inverse magnetic infegral equation (9]
and its denvative operator (40) or (215,

6 Parallel algorithm

We solve the integral equation by a domain-decompasition coupling the global inte-
gral equation and a local Galerkin finite-element method. The total numerical-model
domain is divided into 2* subdomains. Two adjacent subdomains should have averlap-
ping strips as in Fig. 1, An algorithm based on finite-element solution or the differential
equation for the magnetic field is performed in each subdomain (Xie and Zuo, 1991;

FJE-'“;' 1. The domain is -Ill_'l"lll"FHll-q_'d
imbn 2% subdnminins,
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Xie et al., 1995¢; and Xie et al, 1997) and the integral magnetic forward and inver-
sion algorithm is performed in the overlapping strips. Details of the decomposition
method are given in the references. Here we give a briel description. The total dis-
crete matrix is decomposed into 2" submatrices, each one coupled 1o its surrounding
subdomains, A second-order preconditioned biconjugate (SOR-BOG) iteration is used
in parallel 1o solve the submairix equations. The 2" jobs are distributed uniforml ¥
into 27 nodes in a massively parallel computer. A modified first-order global precon-
ditioned biconjugate tteration (PBCG) is used in parallel io solve the reduced global
mialrix equation. A preconditioned SOR-BCG iteration (Varga, 1962; Wilkinson, 1965;
Golub and Van Loan, 1989) is used 1o solve the inverse integral matrix equation,
Note that second-order elements are used in the local subdomain and first-order ele-
ments are used in the reduced global iteration. In the 3DEMITINY parallel program,
the shared data, shared do loop, and message passing are wsed 10 communicate and
distribute subdomain field data and matrix data. In this algorithm and parallel pro-
gram, distribution of the jobs in the parallel processing is uniform and the parallel
arrangement is done appropriately. The new domain decomposition approach also has
been used for nonlinear integral inversion using Special Parallel Processing (SPP) on
the CRAY-ANERSC.GOV and massively paralle]l processing (MPP) on the computer
TiD.

7 Numerical modeling and inversion

We tested our nonlinear inversion algorithm on two synthetic models. Model 1 is
a 90 x 90 x B0 m cubic frame conductor of 0.1 S/m conductivity that includes a
A0 x 30 50 m cubic conductor of 0.25 S/m conductivity inside {Fig. 2A). The geometry
ofmodel 235 the same as that of model 1: the conductivity in the cubic frame is 0.25 S/m,
and the conductivity in the cubic conductor is 0.1 $/m (Fig. 2B). The 18 frequencies
(10, 18, 31, 55, 96, 180, 300, 530, 938, 1658, 3000, 5000, 10 000, 16 000, 20 000,
28000, 38 D00, and 50 000 Hz), 64 vertical magnetic dipole sources on the surface, and
768 receivers on the surface were used 1o make synthetic surface data by solving the
forward magnetic integral equation. The geometry of the one source and 12 receivers
is shown in Fig. 3. In each receiver point, the three magnetic components, H, . H,,
and H. are measured. The amplitude of the verical magnetic surface data excited
by the vertical magnetic source in the center of the surface is shown in Fig. 4 by a
solid line; the total fizld, incident field and scattered field at 50 000 Hz are shown in
plots 1.1, 1.2, and 1.3; the total field, incident field, and scattered field at 10 000 Hz
are plotted in 2.1, 2.2, and 2.3; the total field, incident field, and scattered field at
10 Hz are plotted in the 3.1, 3.2, and 3.3. The phase of the vertical magnetic surface
data excited by the vertical magnetic source in the center of the surface is shown in
Fig. 5 by a solid line. In testing of the inversion, the above model was imbedded
in the large cubic domain [—9%0 m, %0 m; —90 m, 90 m; (.120 m] and the initial
conductivity is (.05 5/m. After 18 iterations, the conductivity image was obtained. The
conductivity imaging of model 1 is shown in (C) of Fig. 2 and the conductivity imaging
of model 2 s shown in (D) of Fig. 2. The amplitude and phase of the vertical magnetic
fiehd of inversion of the model 1 are shown in Fig. 4 and Fig. 5 by using a dashed
line.
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For comparison, we used our electric integral inversion program o run the above
models and the results are shown in (E) and (F) of Fig. 2. The regularizing pa-
rameter of the new inversion is 1LO7639X10-5 for model 1, and 78561X10-5 for
mowdel 2. We used our new magnetic integral inversion code and electrical integral
inversion code to invert VETEM data; the conductivity images are shown in Fig. 6.
The data configuration of VETEM is presented in the paper by Lee et al. (1996). A
new integral-differential coupled domain decomposition, by Xie et al. (1996c), has
been used to parallelize the magnetic integral inversion. We used Cray=C90 to mun the
synthetic models. On a Cray-C%) using 16 processors, the wall clock time is 30 min,
and the parallel efficiency is 96%. The new 3-D nonlincar EM inversion is stable
and convergent; its normalized residual reduced to 1.0e-3 from 1.0 after 18 iters-
Lons.

8 Conclusion

A new 3-I nonlinear inversion, which works with the magnetic-field infegral equation,
has been tested on synthetic data and field data from environmental sites. We obtained
very good images (Fig. 2) from synthetic data and a reasonable subsurface image
(Fig. 6} from the field data. Comparison of the results (Figs. 2C with 2E and 2D with
2F) suggests that 3-D inversion of the magnetic-field integral equation for electric
conductivity and permittivity behaves better than (the more familiar) inversion of the
electric-field integral equation. The advantages of the new magnetic integral inversion

are

1. The magnetic field in Eq. (8) is continuous when electric conductivity is discon-
tinuous, which is convenient for the finite-element method,

Z. The kernel function in Eq. (8) is weakly simgular,

3. There is a natural internal regularizing term.

4. The integral equation (8) can be used easy to construct & new integral differential
coupled parallel domain decomposition,

3. The annealing regulanzing for Eq. (%) can be used to find a global minimum of
Eqg. (11).

6. The magnetic integral equations () and (9) are consistent for nonlinear inversion,

Our new algorithm is not suitable for & = 0. A nonlinear resistivity inversion for direct
curent dita has been developed by Li e al. (1995),
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For magnetic permeability inversion. we hove developed a mes electric integral sgquation
(L1 andd Xie, 1997,

= Hbg. x E = M)dr

Eir) = Eur) — f Vegslr, ) m
"3 H

+ f v, x G¥ir, r) 24V, x E— M)dr, (38)
¥ i

where @ is the magnetic permeability 1o be defined, g 15 the backgroumd magnetic
permeability, G:" (r, £’} is the background secondary magnetic Green’s function, M is
a magnetic source term, HY is the background magnetic field exited by the electric
dipole source, V¥, is the scattering inegral domain in which ¢ — pp # 0. and o, € is
consiant.

The magnetic-field integral equation (8) is dual of the electric imegral equation (3§)
respectively. A new complete EM inversion for o €, is developed by joining Eqs. (8]
and (38) (Mie et al., 1996¢), Histonically, the approaches for the forward problem and
the inverse problem were developed independently of each other. In general, the matrix
of the forward problem is sparse and well-posed when the differential equation 13
discretized by the finite-glement or the finite-difference method, but require artificial
radiating or absorbing boundary conditions. A merit of the integral-equation method
fior imversion is that the artificial boundary condition 1s not needed, but the matrix is full.
Couphng integral and differemial methods through a domain decomposition gives a
local sparse matrix in which boundary conditions are handled by the integral eguation,

Acknowledgments

The new 3-I nonlinear magnetic integral inversion algorithm is supporied by the Office
of Basic Energy Sciences, VETEM program, Engineering and Geosciences Division,
(Mfice of Technology Development, and the Office af Oil, Gas and Shale Technolo-
gies, Fossil Energy Division, of the U5, Department of Encrgy under Contract No.
DE-ACD3-TESFOONE and DOE Massively Paralle]l computer allocation. The authors
would like 1o thank Dr, Bruce Curtis and consultants of the National Energy Research
Supercomputer Center, and Carol Taliaferro for their help.

References

Golub, G. H., and Van Loan, C. F, 1989, Matrix computations: Johns Hopkins Univ.
Press,

Habashy, T. M., Groom, E. W., and Spies, B. B., 1993, Beyvond the Born and Rylov
approximation: J. Geophys. Res., 98, no. B2, 1759-1775.

Lee, K. H., and Xie, G., 1995, Electrical and EM methods for high-resalution subsurface
imaging: 3nd Soe, Expl. Geophys. Jap./Soc, Expl. Geophys. Imernat. Symposium
on Geotomography.

Lee, K. H., Xie, 5., Hoversten, M., and Pellerin, L., 1995, EM imaging lor environ-
mental zite characterization: Internat, Symposium on Three-Dimensional Electro-
magnetics. Schlumberger-Doll Research.

Li J., Lee, K. H., Javancel, L, and Xie, G., 1995, Nonlinear three-dimensional inverse
imaging for direct current data: 65th Annual Internat. Mig. Soc. Expl. Geophys.,
Expanded Abstracis, 250-253,



Algorithm For =03 nonlinear EM inversion 7

Li. )., and Xie, G, 1997, A new 3D magnetic permeability inversion: Lawrence Berkeley
Nwticmal Laborsiory Report,

Tikhonov, &. N_, and Arsenin, ¥, Y., 1977, Solutions wo ill-posed problems: lobn Wiley
& Sons, Inc.

Torres-Verdin, C.. and Habashy, T. ., 1954, Rapid 2.5-D forward modeling and in-
version via a new nonlinear scatiering approximation: Radw Sci., 29, 10611079,

Varga, B. 5., 1962, Matrix iterative analysis: Prentice—Hall, Inc,

Wilkinson, J. H., 1965, The algebruic eigenvalue problem: Clarendon Press.

Xie, G, Li, 1., and Chen, ¥, M., 1987, Gauss-Newton-regularizing method for solving
coefficient inverse problem of PDE and its convergence: ). Comput, Math., 5,
EES R

Xie, G., and Zou, O, 1991, A paralle] algorithm for selving the 3-D inverse scattering
problem: Comput. Phys. Commun,, 65, 320-336,

Xie, G., and Lee, K. H., 1995, Monlinear inversion of 3-D electromagnetic data, in
Progress in Electromagnetics Research Symposium, Proc., Univ. of Washington,
323,

Xie, G, Lee, K. H., and Li, J., 1995¢, A new parallel 3-D numerical modeling of the
electromagnetic field: 65th Ann. Mtg, Soc. Expl. Geophys., Expanded Abstracts,
B21-E24,

Xie, G, Li, 1., and Lee, K. H., 19953, Mew 3-D nonlinear electromagnetic inversion: In-
ternat. Symposiumn on Three-Dimensional Electromagnetics, Schlumberger-Doll
Besearch, 405414,

1995b, Annealing regularization for high resolution geophysical tomogra-
phy: Proc, of 3rd Imernal. Symposium on Geotomography, Soc, Expl. Geophys
Jap Soc. Expl. Geophys., 102-104,

Xie, 5, Lee, K. H., Li, 1., Pellenin, L., and Zuo, D, 1996, 3-0 fast finite element Born
accelerating electromagnetic imaging using integral equation: 66th Ann. Mig.,
Soc. Expl. Geophys., Expanded Abstracts, 261-264.

Xie, G.,and Li, 1., 1997, A new 3-D paralle]l high resolution electromagnetic nonlinear
inversion based on a global mtegral and local differential decomposition: Lawrence
Berkeley Mational Laboratory Report, LBNL-40265,

Yagola, A, G, 1980, O the choice of regularization parameter when solving ill-posed
problems in reflexive spaces: USSR Comput. Math. Math. Fhys., 20, 40-52,




